SEARCHING: IASPEI





JA01 Machine Learning in Geo-, Ocean and Space Sciences (IAGA, IAVCEI, IAHS, IASPEI, IAMAS, IAPSO)

Convener(s): Peter Wintoft (Sweden, IAGA)

Co-Convener(s): Hristos Tyralis (Greece, IAHS), Dave Reusch (USA, IAMAS), Istvan Szunyogh (USA, IAMAS), Fatma Jebri (UK, IAPSO), Gesa Maria Petersen (USA, IASPEI), Silvia Massaro (Italy, IAVCEI)

Description
Modern artificial intelligence (AI), machine learning (ML) and deep learning (DL) techniques are in the process of transforming many different fields of geosciences including for example seismology, the modelling of hydrological systems, space weather studies and oceanography. The progress in the development of ML algorithms combined with the increasing availability of geophysical data and computational power deliver a great promise for transformational advancements with the novel computational techniques. In this joined session, we invite presentations on a broad variety of AI, ML and DL methods, that both, establish new or improve commonly performed data processing, detection, clustering, interpretation, prediction and imaging tasks. In particular, we welcome contributions on the integration of ML techniques to improve the quality of oceanographic, geosciences and space sciences research approaches. The goal of the session is to establish the state of AI, ML and DL across multiple geoscientific fields, and to pave the path forward in taking full advantage of the exciting developments in ML/DL.



Go to the top of the page



JA02 Data Assimilation and Statistical Learning in Earth and Space Sciences (IAGA, IACS, IAHS, IAMAS, IASPEI)

Convener(s): Tomoko Matsuo (USA)

Co-Convener(s): Patricia de Rosnay (UK, IACS), Julien Aubert (France, IAGA), Larry Kepko (USA,IAGA), Salvatore Grimaldi (Italy, IAHS), Craig Bishop (Australia, IAMAS)

Description
This symposium will serve as a forum on the latest research and development in data assimilation and statistical learning across Earth and Space Science community. Data assimilation is a powerful statistical learning framework that combines models, observations, and their respective uncertainties, allowing us to unify data-driven scientific induction with first principle-based deductions. The framework in the general form can be applied to any geophysical system, providing the common ground for our forum. On the other hand, applications of data assimilation and statistical learning techniques to sparsely observed geophysical systems (such as the core, mantle, cryosphere, hydrosphere, thermosphere and ionosphere, and magnetosphere) face considerable challenges, requiring innovative adaptation of methods to maximize the use of sparse observations, and considerable research efforts to quantify model and observational uncertainties. This symposium solicits papers that address unique application challenges faced by different disciplines so that we can learn from each other and further our common interest in advancing data assimilation and statistical learning applications in the Earth and Space Sciences.



Go to the top of the page



JA03 Analogue Data for the Future: Preservation and Present-Day Utilization of Historical Data in the Geosciences (IAGA, IACS, IASPEI, IAHS, IAG, IAPSO)

Convener(s): Ciarán Beggan (UK, IAGA)

Co-Convener(s): Lauren Vargo (New Zealand, IACS), Kirsten Elger (Germany, IAG), Hisashi Hayakawa (Japan/UK, IAGA), Alberto Viglione (Italy, IAHS), Satheesh S.C. Shenoi (India, IAPSO), Josep Batlló Ortiz (Spain, IASPEI), Kristine Harper (Denmark, IAMAS), Roberto Carniel (Italy, IAVCEI)

Description
In many areas of geophysical and geological studies, long running measurements at a fixed location or over a wider region exist in analogue (physical) form including, amongst others, on photographic paper, in journals or as published tables. It is highly advantageous to convert analogue records to digital values, allowing modern computational techniques and analysis to be applied. However, it is often challenging to convert analogue records as formatting, the type of information recorded, accompanying metadata, and unit metrics change over time. Campaigns to digitize temperature or climate-related measurements have been very successful, especially with the recruitment of keen citizen scientists. However, more scientific formats, such as graphs with technical information or notation, are less amenable to generalist help. Historic analogue records frequently offer significant scientific implications, forming a baseline for analyses of long-term variability and/or short-term extreme hazards in multiple scientific aspects. In this context, it is important to compare these analogue records with one another and document their individual instrumental details for cross-calibrations. This session looks at methods for preservation, extraction, and analysis of historic analogue records, including by manual, image processing or machine learning techniques. This session also accommodates documentation of instrument detail and calibration methods for historical observations. This session welcomes new analyses using data that have previously been in analogue form, and case studies of long-term geophysical variability or individual short-term extreme events. We seek submissions from across all associations.



Go to the top of the page



JA04 Marine Geodesy and Geophysics – Opportunities & Hazards (IAGA, IAG, IASPEI, IAVCEI)

Convener(s): Sebastian Hölz (Germany, IAGA)

Co-Convener(s): Valérie Ballu (France, IAG), Heidrun Kopp (Germany, IASPEI), Paraskevi Nomikou (Greece, IAVCEI)

Description
More than 70% of the Earth surface is covered by ocean. The seafloor is the critical interface where geology, climate, ecosystems, and human activities converge. Yet, a high percentage of the ocean’s seafloor and the subsurface below the seafloor remain unexplored and is both a source of opportunities in terms of unexplored resources (e.g. massive sulfides and hydrothermal fluids) as well as hazards (e.g. due to earthquakes, tsunamis, volcanoes or the exploitation of marine mineral resources). A responsible and sustainable use of resources and mitigation of geohazards require an enhanced knowledge about short- and long-term processes that shape the current sea floor, as well as about its role in the Earth System. Innovative methods help us to better identify and monitor structures, which can be related to geohazards as well as resources. This session invites all contributions of marine geophysical and geodetic research ranging from small to large scales aimed at characterizing structures and dynamics of the Earth’s interior and the seafloor. Solicited fields of research include instrumentation, survey design, data acquisition and novel data processing, visualization, modeling and interpretation procedures. We invite contributions from various fields of offshore geophysical investigations including seismological and seismic, electromagnetic methods as well as contributions from seafloor geodesy.



Go to the top of the page



JA07 Interdisciplinary Observations of Pre-Earthquake Processes. The Concept of Lithosphere- Atmosphere- Ionosphere Coupling (IAGA, IASPEI (EMSEV))

Convener(s): Mala Bagiya (India, IAGA)

Co-Convener(s): Dimitar Ouzounov (USA, IASPEI/EMSEV), Sergey Pulinets (Russia, IASPEI/EMSEV), Katsumi Hattori (Japan, IASPEI/EMSEV), Patrick Taylor (USA, IASPEI/EMSEV)

Description
This symposium concerns the multidisciplinary observations that could lead to understanding processes preceding earthquakes. New results were obtained from seismometers, magnetometers, magnetotelluric stations, GNSS receivers, and Low-Earth-orbiting satellites: DEMETER, Swarm, CSES, etc. This joined analysis of atmosphere-ionosphere connection, seismic records (foreshocks /aftershocks), geochemical, electromagnetic, and thermodynamic processes related to stress changes in the lithosphere established the foundation for the new lithosphere-atmosphere-ionosphere coupling (LAIC) mechanism. This multi-instrumental approach can help support the missing data of the LAIC tools before, during, and after large earthquakes. Presentations will include but are not limited to: observations, modeling; analyses, seismic; geochemical, electromagnetic; and thermodynamic processes; and histories related to stress changes in the lithosphere and their statistical and physical validation. Presentations on the latest developments in earthquake predictability are welcomed.



Go to the top of the page



JA08 Ground and Satellite Electromagnetic Observations Related to Earthquakes, Tsunami's and Volcanic Activity (IAGA, IASPEI (EMSEV), IAVCEI)

Convener(s): Ramesh Singh (India/USA, EMSEV)

Co-Convener(s): Ken'ichi Yamazaki (Japan, EMSEV), Qingjua Huang (China, IASPEI/EMSEV), Takeshi Hasimoto (Japan, IAVCEI/EMSEV)

Description
The earthquakes, tsunamis, and volcanic eruptions are associated with deep ground and the ocean, and the effects are observed through various observing systems deployed on the ground surface, in the borehole, and the ocean. The multispectral satellites and airborne and drone sensors provide information at a high spatial and temporal resolution of the Earth, Ocean, meteorological, atmosphere, and ionosphere. The global navigation satellite system (GNSS) has proved an added advantage globally to observe signals associated with these natural hazards. Recent observations and data analysis has shown a strong coupling between land, ocean, atmosphere, meteorological and ionospheric parameters with earthquakes, tsunamis, and volcanic eruptions. The changing climate system is believed to play an important role in the slow deformation and stress changes and frequency of these disasters. The session invites contributions based on laboratory, modeling, all kinds of ground and field, borehole, and satellite data analysis to understand the physical mechanism associated with these natural hazards.



Go to the top of the page



JC06 Mountain Cryosphere Hazards (IACS, IAVCEI, IASPEI)

Convener(s): Holger Frey (Switzerland, IACS/GAPHAZ)

Co-Convener(s): Michele Koppes (Canada, IACS/GAPHAZ), Mylene Jacquemart (Switzerland, IACS/GAPHAZ), Fabian Walter (Switzerland, IASPEI), Roberto Sulpizio (Italy, IAVCEI)

Description
High mountains across the globe have been undergoing significant changes in natural hazards over the last few decades. Rapid warming has caused changes in the mountain cryosphere at unprecedented rates, affecting geomorphic processes beyond the ice, with significant impacts on landscapes and ecosystems. Cryospheric hazards are also undergoing rapid changes in mountains worldwide, often beyond historical precedence. Risks associated with all types of mass movements in mountain regions are increasing due to changes in the magnitude and frequency of hazards and increasing socio-economic development, which affects both exposure to and vulnerability of people and infrastructure. In this session, we invite contributions on all forms of hazards and risks from the mountain cryosphere, including avalanches, landslides, lake outbursts, volcano-ice interactions, earthquakes, permafrost thaw, debris flows, cascading process-chains, and impacts on mountain communities. We welcome case studies; theoretical and conceptual process models; mapping and modelling past, present and future hazards and risks; as well as aspects of disaster risk reduction and management. Contributions that also address the socio-economic drivers of risks are encouraged. 



Go to the top of the page



JG01 Interactions of the Solid Earth With Ice Sheets and Sea Level (IAG, IACS, IASPEI)

Convener(s): Rebekka Steffen (Sweden, IAG/IASPEI)

Co-Convener(s): Bert Wouters (Netherlands, IACS), Natalya Gomez (Canada, IAG/IACS), Lambert Caron (US, IAG), Doug Wiens (US, IASPEI)

Description
Measurements of solid Earth, sea-level and ice-sheet changes are influenced by a complex interaction of processes occurring over a large range of spatial and temporal scales. Present-day observations of solid Earth deformation in a given location are influenced by present and past changes in global surface loading, and these deformations play an important role in controlling ice-sheet changes in turn. Furthermore, observations that constrain past ice sheets are affected not only by glacial isostatic adjustment, but also by changing mantle dynamic topography and tectonic processes. In addition, applied geophysical investigations are revealing crucial spatial variations in Earth rheology, which again affect the deformation of the solid Earth. In this symposium, we showcase model- and data-driven efforts to understand feedbacks between surface load changes and the solid Earth over all timescales and observation types.
Topics covered by the Symposium:
- observations of mass changes in the cryosphere and oceans, and their interaction with solid Earth deformation
- influence of glacial isostatic adjustment on paleo and modern observations of sea level or ice sheet behavior
- seismicity induced by ice-mass and sea-level changes
- geophysical studies of the rheology of the solid Earth in the context of sea-level and ice-sheet studies

Solicited speakers: Tanghua Li (Earth Observatory of Singapore) and Terry Wilson (Ohio State University)

Go to the top of the page



JG07 Modern Gravimetric Techniques for Geosciences (IAG, IAVCEI, IAPSO, IASPEI)

Convener(s): Jürgen Müller (Germany, IAG)

Co-Convener(s): Chris Hughes (UK, IAPSO), Rudolf Widmer-Schnidrig (Germany, IASPEI), Emily Montgomery-Brown (USA, IAVCEI)

Description
New tools for gravimetric Earth observation on ground and in space are being developed in quantum physics that enable novel applications and measurement concepts in the geosciences. We invite presentations to illustrate the principles and state of the art of these novel techniques, like quantum gravimetry, relativistic geodesy with clocks or chronometric levelling, advanced intersatellite tracking and others. These advanced techniques will open a door to a vast bundle of applications. Terrestrial mass variations can be monitored at various scales providing unique information on the related climate change processes. We especially welcome presentations on further applications of those new methods in the geosciences. For example, quantum gravimeters are beneficial for monitoring mass changes, e.g. at volcanos or of the local groundwater. Clock networks provide differences of physical heights and can monitor mass and height variations, e.g., at tide gauges, to disentangle land deformation and sea level rise. Based on that advanced quantum technology, improved observation of mass changes from space will give access to smaller (but relevant) effects like those related to permafrost thawing.



Go to the top of the page



JH01 New, Large, and Open Data for the Earth and Environmental Science Community (IAHS, IAPSO, IACS, IAGA, IASPEI)

Convener(s): Heidi Kreibich (Germany, IAHS)

Co-Convener(s): Charles Fierz (Switzerland, IACS), Masahito Nosé (Japan, IAGA), Elena Tel Pérez (Spain, IAPSO), Florian Haslinger (Switzerland, IASPEI)

Description
Data is essential for understanding, modeling and managing earth and environmental processes, their interactions and their dynamics. Therefore, the acquisition, management and use of data is a central component of all earth and environmental sciences. New data sources and advanced monitoring methods, including new sensors and instruments on the ground, at sea and in the air, web crawling technology and citizen science, as well as the strong trend towards open data and data sharing, open up fantastic opportunities but also bring challenges. There are concerns, for example, about ensuring and appropriately documenting data quality in particular with respect to ‘new data’, as well as about creating sufficient incentives for monitoring, data sharing and monitoring downstream usage (attribution) with persistent identifiers, or about adequate long-term curation of raw data and derived products. The aim of this symposium is to present and discuss new opportunities, but also challenges of these developments. We want to learn from each other how to support and implement the UNESCO recommendation for open science, the WMO Unified Data Policy, and the IOC/IODE recommendations in the framework of the UN Ocean Decade. For example, issuing and managing persistent identifiers throughout the data lifecycle, building FAIR and CAREful 'open' services, enforcing proper citation, are approaches that help achieving the vision of FAIR (Findable, Accessible, Interoperable and Reusable) and CARE (Collective benefit, Authority to control, Responsibility and Ethics) data that support quality action and research in the open science environment.



Go to the top of the page



JH04 Anthropocene: Perspectives From and Within Geophysics (IAHS, IAMAS, IACS, IASPEI, IAVCEI, IAG, IAPSO)

Convener(s): Christophe Cudennec (France, IAHS)

Co-Convener(s): Richard Essery (UK,IACS), Melita Keywood (Australia, IAMAS/iCACGP), Mark Lawrence (Germany, IAMAS/iCACGP), Domenico Giardini (Switzerland, IASPEI), Roberto Sulpizio (Italy, IAVCEI), Catia Domingues (UK, IAPSO)

Description

As the International Union of Geological Sciences considers the Anthropocene from a stratigraphic perspective, and as other communities are considering a wider definition (see the ICSU-ICS intermediate synthesis in 2016, https://www.sciencedirect.com/journal/global-environmental-change/vol/39/suppl/C) IUGG has to reconsider the concept and to renew its contribution. This session welcomes any communication in that perspective, including about great acceleration, planetary boundaries, change detection and attribution, climate change and other changes to the atmosphere-ocean-cryosphere-hydrosphere system, such as erosion-sedimentation, man-induced seismicity and man-driven geomorphology, along with related farther-reaching topics such as One Health; and assessing these issues and science-informed policy options for mitigation and adaptation together with the socio-geosciences.





Go to the top of the page



JH05 Citizen Science, Crowdsourcing and Innovative Monitoring for Advancing Geo-Sciences (IAHS, IASPEI, IAGA, IACS, IAMAS)

Convener(s): Fernando Nardi (Italy, IAHS)

Co-Convener(s): Ryan Crumley (USA, IACS), Manoj Nair (USA, IAGA), Thomas Spengler (Norway, IAMAS), Rémy Bossu (France, IASPEI)

Description
Citizen involvement in science has been transformed in the last decade by new and widely accessible data acquisition and processing tools as well as by pervasive low-cost and portable technology. Geospatial technologies and affordable equipment (smart phones, cameras, drones, etc.) allow students, researchers, and citizens to gather, analyze, visualize, and share a wealth of earth system data at different spatial and temporal scales. New opportunities are, thus, arising for addressing the uncertainties and inaccuracies of geophysical models and risk management within different fields, for a better understanding, monitoring, and forecasting of geophysical extremes. Citizen science is supporting a new paradigm for geosciences, where active citizens and crowdsourcing of data have a pivotal role for risk mitigation, communication, and awareness. This transition requires multi-disciplinary and trans-sectoral knowledge, analytical approaches, and data processing methods, spanning from earth-, geo-, hydro-, cryo- sciences to humanities as well as social and communication sciences, to synergistically define the guidelines and procedures that support effective use of human-sensed data. A key challenge in using citizen-science data is the significant noise content in the data collected by untrained users. Recent advances in Machine-Learning (ML) could allow us to build noise-filtering algorithms that can take advantage of high volumes of data created by citizen-science projects.  In this framework, the use of unintended technology along with do-it-yourself and low cost equipment is opening novel observational avenues. This joint symposium seeks contributions on data, tools, methods, and procedures that explore the role, value, and performances of citizen science and innovative sensing for earth science research.



Go to the top of the page



JH06 Education & Outreach in Geosciences (IAHS, IASPEI, IAGA, IAG, IAVCEI, IACS, IAMAS, IAPSO)

Convener(s): Christophe Cudennec (France, IAHS)

Co-Convener(s): Fabien Maussion (Austria, IACS), Markku Poutanen (Finland, IAG), Katia Pinheiro (Brasil, IAGA), Tereza Kameníková (Czech Republic, IAGA), Thomas Spengler (Norway, IAMAS), Angela Pomaro (Italy, IAPSO), Raju Sarkar (Bhutan, IASPEI), Natalia Pardo (Colombia, IAVCEI)

Description
Sharing scientific knowledge and methods through education and outreach is of high importance to support the societal transition in terms of sustainability, development, and security. Initial and life-long education, training in operational services, and capacity development within institutions and society are facing many challenges, when dealing with environmental and societal changes, disaster risk reduction, and the evolution of techniques along the data – information – knowledge – decision support chain. This symposium welcomes conceptual developments as well as practical study cases from geoscientists, as well as from didacticians and knowledge brokers. The variety of approaches across disciplines and across the diversity of the geosciences will provide a collective overview on education and outreach activities the basics and variants in our fields. The symposium also encourages sharing of lessons learned from the enhanced digitization induced by the pandemic and from the ongoing digital revolution, showcasing perspectives of the knowledge society and the Open Science paradigm.



Go to the top of the page



JM03 Polar Regions Instrumentation (IAMAS, IACS, IASPEI)

Convener(s): Tracy Moffat-Griffin (United Kingdom, IAMAS)

Co-Convener(s): Alexis Berne (Switzerland, IACS), Matthew Lazzara (USA, IAMAS), Adam T. Ringler (USA, IASPEI)

Description
There are many ways to study and characterize the atmosphere, from the use of ground-based instrumentation and balloons to satellite observations. This symposium welcomes submissions that cover different atmospheric instrument approaches to studying the depth of the polar atmosphere: the surface, the troposphere and beyond. New atmospheric instrumentation and their results, new analysis techniques or planned projects/observational research campaigns will be highlighted. Observational studies that feature polar instrumentation applications are also encouraged in this symposium.



Go to the top of the page



JP01 Tides (IAPSO, IAHS, IAGA, IASPEI, IAG)

Convener(s): Joanne Williams (UK, IAPSO)

Co-Convener(s): Jean-Paul Boy (France, IAG), Nick Pedatella (USA, IAGA), Christophe Cudennec (France, IAHS), Philip Woodworth (UK, IAPSO), Evgeny Podolskiy (Japan, IASPEI)

Description
The session will be open to submissions on any aspect of the tides of the ocean, estuaries, lakes, solid earth, and atmosphere. Tides are fundamental to many geophysical processes, driving ocean mixing, contributing to coastal erosion and sediment transport, and influencing ocean biogeochemistry and ecosystems. Tides affect port operations and coastal infrastructure and modulate the severity of storm surges and coastal flooding. Energy from ocean tides is harnessed for electricity generation. In the cryosphere, tides are also important, including for sea ice dynamics, transport and mixing processes. Icy worlds are not only affected by tides but also modulate them. For example, sea ice dampens tidal amplitudes and currents. At the same time, tides regulate the growth of sea ice, contribute to melting of glacial/sea ice, and can be a pacemaker of glacier flow, deformation, and fracture. Interannual variability in the tides may arise from variations in sea ice extent, changes in ocean stratification or regional climate processes. Tides also play an important role throughout Earth's atmosphere, as well as in other planetary atmospheres. Coastal, regional and global models of tides and internal tides continue to develop, as do techniques for observing tides and reconstructing historical tidal data. We welcome presentations on these methods, and discoveries about past and future long-term changes in tides, tidal variability, tidal dynamics, and the impacts of tides.



Go to the top of the page



JP04 Ice Sheet-Ocean Interactions: Challenges and Insights From Theory, Observations and Modelling (IAPSO, IACS, IASPEI)

Convener(s): Felicity McCormack (Australia, IAPSO), Isabel Nias (UK, IACS)

Co-Convener(s): Donald Slater (UK, IACS), Sue Cook (Australia, IACS), Yoshihiro Nakayama (Japan, IAPSO), Helene Seroussi (USA, IACS/IAPSO), Rick Aster (USA, IASPEI)

Description
Ocean-driven melting of the Greenland and Antarctic Ice Sheets is accelerating and is a key process contributing to the significant uncertainty associated with estimates of future sea level rise. Ice sheet-ocean interactions range across spatial scales: from the microscale processes governing melt at the ice-ocean boundary layer, through the buoyancy-driven circulation beneath ice shelves and at tidewater glaciers, to large-scale fjord and open ocean circulation patterns; and across a range of timescales: in response to seasonal fluctuations in warm water supply to the ice-ocean front to multi-decadal and centennial oscillations in response to intrinsic ice and ocean dynamic processes. This symposium brings together researchers working in the areas of interactions between ice sheets, ice shelves, tidewater glaciers, icebergs, and the ocean, and covering a range of spatial and temporal scales that are relevant to ocean-driven melting of ice. The session will cover theoretical, observational, and modelling disciplines. Studies that offer new insights and technologies to improve understanding of ice-ocean interactions are particularly welcomed.



Go to the top of the page



JP05 Tsunamis (IAPSO, IASPEI, IAVCEI, IAMAS, IAG)

Convener(s): Yuichiro Tanioka (Japan, IASPEI)

Co-Convener(s): Maitane Olabarrieta (USA, IAMAS), Diana Greenslade (Australia, IAPSO), Maria Ana Baptista (Portugal, IAPSO), Alexander Rabinovich (Russia, IASPEI), Mohammad Herdarzadeh (UK, IASPEI), Yuichi Nishimura (Japan, IAVCEI)

Description
Tsunamis are one of the most devastating natural disasters, with the potential to cause tremendous damage along coastlines around the world. Catastrophic tsunami events of this century, such as the 2004 Indian Ocean and 2011 Tohoku tsunamis, have demonstrated the increasing risk of disasters for coastal population and infrastructure. As a response to these deadly tsunamis, many new tsunami forecast and warning capabilities have been developed and implemented. The 2018 Sulawesi and Krakatau tsunamis have demonstrated that tsunamis caused by mechanisms other than great earthquakes must also be considered. The more recent 2022 large volcanic eruption in Tonga generated air-sea coupled wave causing damage along the coast around the Pacific. Sea-level rise caused by global warning also presents new challenges for tsunami science. The IUGG symposium will discuss all aspects of tsunami science including: theoretical and numerical research on tsunami generation and inundation; development of forecast and warning methods; investigation of geologic records of past events; response, mitigation, and recovery strategies; observational studies, including collation of historical observations; and hazard and risk studies from tsunamis generated by earthquakes, landslides, volcanic eruptions. The symposium will also include a special session on meteo-tsunamis, including the air-sea coupled wave due to the 2022 Tonga eruption, in association with IAMAS.



Go to the top of the page



JS01 Cryoseismology (IASPEI, IACS, IAG)

Convener(s): Andreas Köhler (Norway, IASPEI)

Co-Convener(s): Alex Brisbourne (UK, IACS), Bernd Kulessa (UK, IACS), Mirko Scheinert (Germany, IAG), Masaki Kanao (Japan, IASPEI)

Description
The cryosphere, comprising the Earth’s glaciers, ice sheets, sea ice, permafrost, and snowpack, is undergoing rapid change in a warming climate. However, our understanding of the processes governing these changes is hindered by a lack of observations with sufficient temporal and spatial resolution in these generally remote and often inaccessible environments. Fortunately, many of the cryospheric processes of interest produce ground vibrations or cause variations in the seismic wave propagation properties. Analysis of these seismic signals and ground changes can yield essential insight into the relationship between environmental forcing and the response of ocean - cryosphere - solid earth systems. For example, impulsive events with small magnitudes (icequakes) and larger teleseismically detected glacial earthquakes can be generated by dynamic glacial processes such as calving or basal slip. Furthermore, ambient seismic noise interferometry allows us to monitor seasonal and long-term changes in permafrost, ice bodies, and the solid earth below ice sheets and glaciers. Continuous study of temporal and spatial variability of these processes improves our understanding of the cryosphere’s response to climate change. In this joint symposium between IASPEI and IACS, we invite submissions which cover the full gamut of “cryoseismology”. We encourage contributions treating the observation and modeling of seismic signals involving dynamics of ice sheets, sea ice, icebergs and glaciers, as well as changes to the thermal and physical structure of permafrost and snow. We invite submissions on case studies, development of survey techniques, advances in the processing, integration with other geophysical methods or in-situ observations, as well as new technologies such as distributed acoustic sensing (DAS) with fiber optics.

Solicited speaker: Fabian Walter (Switzerland)

Go to the top of the page



JS02 Seismo – Geodesy (IASPEI, IAG)

Convener(s): Takuya Nishimura (Japan, IASPEI)

Co-Convener(s): Jean-Mathieu Noquet (France, IAG)

Description
Geodetic measurements contribute to the study of the different phases of the seismic cycle, as they allow recording coseismic, postseismic, and interseismic deformation. Together with seismology, geodetic data helps improving seismic hazard assessment and define new early warning systems for earthquakes. This symposium focuses on both theoretical aspects and observational challenges of earthquake-related deformation using geodetic measurements, as well as the joint use of seismology and geodesy to better understand the behavior of faults.

Solicited speakers: Prof. Tim Wright (University of Leeds, UK) Dr. Eiichiro Araki (JAMSTEC, Japan)

Go to the top of the page



JS03 Probing the Earth’s Lithosphere: Understanding Tectonic, Volcanic, Cryotonic and Geodynamic Processes Using Geophysical Methods (IASPEI, IAG, IAGA)

Convener(s): Uli Achauer (France, IASPEI)

Co-Convener(s): Holger Steffen (Sweden, IAG), Foteini Vervelidou (France, IAGA)

Description
The emergence of many new high-resolution datasets in almost all different disciplines of geosciences over the last two decades further emphasized that most geoscientific objects are so complex, that only interdisciplinary efforts and combination of datasets provide a pathway to decipher their complex structures and variability with time.
Cratonic domaines, hotspot track systems, rifted continental margins, subduction zones, continental baby plumes, intraplate seismicity, coastal subsidence, and impact cratering are just few examples of such processes pertaining in particular to Earth's lithosphere. In this symposium we welcome studies which shed new light on the evolution and geodynamic development of complex geological processes and structures of Earth's lithosphere using geophysical methods. Terrestrial and space-borne studies making combined use of data from different fields in earth sciences, e.g., potential fields like magnetic field and gravity, tectonics, geochemistry, and structural geology, as well as studies including geodynamic modelling are especially welcome. We further invite presentation on multidisciplinary national and international research infrastructures for integrated use of data and their products.



Go to the top of the page



JS04 Monitoring, Imaging and Mapping of Volcanic Areas (IASPEI, IAG, IAVCEI, IAGA)

Convener(s): Thomas Walter (Germany, IASPEI)

Co-Convener(s): Ronni Grapenthin (USA. IAG), Takeshi Hashimoto (Japan, IAGA), Federico Lucchi (Italy, IAVCEI)

Description
Over 1500 volcanoes are considered active, and are in reach of an estimated 10% of the global population. Volcanoes are curse and blessing for the population, as they are a source of significant hazards difficult to predict, and provide fertile soil and exploitable resources. Thanks to field-constrained eruptive histories of active centers and improved instrumental monitoring on the ground, complemented by high resolution remote sensing and complex modelling, the involved time scales, dimensions of volcanic processes and diversity in eruptive style are much better understood. All this allows identifying the internal structure and unrest, intrusion of magma in reservoirs and dikes, hydrothermal activity and degassing at the surface, and material transport processes to distance. Despite these advances, significant volcano eruptions and location is unpredictable, and the duration, rates, or scale remain largely speculative, as vividly demonstrated for the recent eruptions at Nyiragongo (DR Congo), at Hunga Tonga (SW Pacific), Fagradallsfjall (Iceland), or at La Palma (Canary Islands), and elsewhere. The aim of this joint symposium is to bring together scientists elaborating volcanic areas using monitoring, imaging and modelling techniques, to better understand the past, present, and future of volcanoes, and to access the hazards and benefits of volcanic areas. In particular, we invite contributions using broad techniques from geophysical imaging, seismology, geodesy, as well as from active and passive remote sensing, geochemistry, gas analysis and petrology, in order to exchange on how volcanoes prepare for eruptions, undergo unrest, hydrothermally exhalate during periods of quiescence, and evolve in the short and long term. Moreover, interaction of volcanoes and their surrounding will be discussed in this symposium, trying to better understand and exchange on the role of the tectonics, glaciers, earthquakes, ocean, and climate.



Go to the top of the page



JS05 Real-Time GNSS Data and Products Usage: Interoperability and Management Challenges (IASPEI, IAG, IAVCEI, IAPSO)

Convener(s): Angelo Strollo (Germany, IASPEI)

Co-Convener(s): Antonio Avallone (Italy, IAG), Yuhe Tony Song (USA, IAPSO), Clinton John (Switzerland, IASPEI), Giuseppe Puglisi (Italy, IAVCEI)

Description
The Internet of Things continues to expand with reduced restrictions throughout the Urban Space and enables reliable and simple real-time data streaming even from very remote areas. Such technological developments, alongside the growth in cloud computing, have enabled real-time streaming of GNSS data and products. GNSS data today has mature standards (i.e. RTCM formats) for a wide spectrum of applications (civil and military navigation, science, commercial purposes). On the other hand, GNSS products are domain-specific, requiring expertise of scientists and technical personnel. In the last decade, real-time GNSS products have offered new opportunities for monitoring natural hazards in real-time (i.e. earthquakes, volcanoes, landscapes). To become widely available within existing domain specific processing pipelines these products must be available via standard formats and services. A typical example is real-time satellite orbit and clock data which enables several real-time positioning flavours, from standard precise point positioning and relative positioning to regional augmentation and seismic and geodetic data fusion. These products, available in real-time and via standard formats and services (e.g., seedlink and mseed for seismology) could be game changers within the context of early warning systems for tsunamis, landslides, volcanoes, and other natural disasters, as well as for infrastructural monitoring. This interdisciplinary symposium welcomes contributions outlining recent developments in real-time GNSS applications, in particular the usage of real-time data and products within the geophysics domain. This includes: processing techniques developed for real-time products, augmentation through the addition of new data; data management policies; use case examples, in particular those fostering interoperability; adoption or development of new standard formats. The aim of the symposia is to remove the barriers between scientific domains, foster interoperability, and to welcome discussions that lead towards interdisciplinary technical discussions around common formats and interoperability.



Go to the top of the page



JS06 Joint Inversion of Different Geophysical Data Sets (IASPEI, IAGA, IAG, IAVCEI)

Convener(s): Christel Tiberi (France, IASPEI)

Co-Convener(s): Mareen Lösing, (Germany, IAG), Max Moorkamp (Germany, IASPEI/IAGA), Alexander Grayver (Switzerland, IAGA), Luca D'Auria (Spain, IAVCEI)

Description
The Earth is composed of various materials with different physical properties. Therefore understanding its structure and dynamics requires a combination of multiple observations and complementary tools. For decades now, the joint use of different geophysical and geological datasets in inversion or modelling has become a popular way of investigating Earth structure and dynamics at many different scales. In this symposium, we will address all aspects of research that utilize the combination of multiple datasets in multiple parameter inversion or modelling. This includes methodological concepts to improve the performance of integrative imaging, innovative applications and case studies of these techniques, theoretical developments and multi-scale approaches. We welcome contributions from all disciplines that use data integration for a better quantitative understanding of the structure and dynamics of the Earth, from the subsurface down to its core.



Go to the top of the page



JS07 Geophysical Constraints on the Earth’s Deep Interior Combining Modelling and Observations (IASPEI, IAGA, IAG, SEDI)

Convener(s): Jérémy Rekier (Belgia, IASPEI)

Co-Convener(s): Carla Braintenberg (Italy, IAG), David Cebron (France, IAHS)

Description
This symposium aims to bring together contributions from different fields aiming to elucidate the physics of the deep Earth, in particular the Core-Mantle interactions. Recent satellite missions GRACE, GOCE and SWARM have provided invaluable data that can be used to constrain the planet’s deep interior dynamics and physical state. Combined with geodetic and seismic observations, these can be used to constrain the existence of density stratification in the outer core which would affect models of geodynamo, and long-term thermal evolution. With the addition of magnetic observations, magnetohydrodynamics models can be employed to constrain the electric conductivity near the CMB and its direct effect on the Earth’s nutation and length of Day. We also welcome contributions concerning the inner core composition and dynamical interactions with the outer core and mantle.



Go to the top of the page



JS08 Advances in Heat Flow Studies: From Fundamental Geodynamic Understanding to Geothermal Energy Applications (IASPEI, IAVCEI (IHFC))

Convener(s): Ben Norden (Germany, IAVCEI)

Co-Convener(s): Ivone Jimenez Munt (Spain, IASPEI), Sukanta Roy (India, IASPEI)

Description
Until the 1950s, terrestrial heat flow was only documented in a few specific areas of the globe. Due to the importance of heat flow determinations in characterizing the Earth’s energy budget, geodynamic processes, and its role in geothermal energy exploration, the need for extensive heat-flow measurements and mapping became clear. Since 1963, the International Heat Flow Commission of IASPEI has been advising on the acquisition of heat-flow data through temperature-depth measurements and thermal properties of rocks in a variety of geologic environments and tectonic regimes. This effort has led to significant advances in heat flow studies that have positively influenced many disciplines, e.g. seismology, magnetism, volcanology, geodynamics, and hydrogeology. It is now widely recognized that understanding the mechanisms of heat transfer in continental and oceanic regions is crucial for better appreciation of the thermal structure of the lithosphere. For example, the depth distribution of earthquakes can be related to the brittle-ductile boundary which is thermally controlled. In polar regions heat flow can exert a key influence on ice-sheet temperature, ice rheology, basal melting, and the consequent mechanical decoupling at the ice-bedrock interface. Other contemporary topics that thermal studies address include climate change, permafrost thawing, and mineral resource evaluation. This symposium marks the 60th anniversary of the International Heat Flow Commission with the goal of highlighting the accomplishments of heat-flow studies, as well as the technological advances in borehole and rock thermo-physical measurements, and their relationship to a wide range of geodynamic processes related to the thermal state. We welcome contributions that describe the results of experimental and theoretical works of any geoscientific discipline and the symposium is designed to provide a platform for the exchange of ideas, methods, and concepts centered on the thermal aspects of the Earth’s interior.



Go to the top of the page



JS09 Early Warning Systems for Geohazards (IASPEI, IAVCEI, IAHS, IAG)

Convener(s): Elisa Zuccolo (Italy, IASPEI)

Co-Convener(s): John LaBrecque (USA, IAG), Maria-Helena Ramos (France, IAHS), Roberto Sulpizio (Italy, IAVCEI)

Description
Natural disasters related to a variety of geohazards (e.g. earthquakes, landslides, volcanic eruptions, tsunamis and floods) constantly pose threats to humankind and ecosystems at large on a global scale. Exposure to geohazards has increased dramatically in recent decades, and climate change has already affected the frequency and severity of weather-related events in several regions of the world. Consequently, social vulnerability has also changed, prompting Civil Protection authorities and decision makers to increasingly focus on disaster mitigation and risk reduction strategies. In this context, Early Warning Systems (EWS) constitute a major tool to improve preparedness and response to geohazards, prevent loss of life, and reduce economic impacts. Increasing the availability and access to multi-hazard EWS and disaster risk information is also one of the global targets set by the Sendai Framework for Disaster Risk Reduction 2015-2030. This Symposium aims at bringing together scientific and operational advances on the development and demonstration of EWS for geohazards. It provides an opportunity for summarizing the progresses in the achievement of the Sendai Framework targets and reporting on latest trends in EWS for a broad range of geohazards. It also includes identifying current gaps and key challenges for the co-design of EWS with stakeholders and end users, and for their practical implementation. The symposium encourages original research and sharing of knowledge, lessons learned and emerging examples of good practice. The goal is to favor a multi-disciplinary discussion and synergies as a basis for commitments aimed at expanding EWS capacities for geohazards. Topics of interest include but are not limited to: (i) monitoring systems for geohazards, (ii) dynamic and evolutionary process modelling; (iii) treatment of epistemic uncertainty; (iv) decision-making strategies; (v) methodologies and tools for (near) real-time risk mitigation; (vi) cost-benefit analysis and evaluation of socio-economic impact; (vii) evaluation of cascading effects; (viii) practical case studies.

Solicited speaker: Simona Colombelli (University of Naples Federico II, Italy)

Go to the top of the page



JV03 Hunga Tonga (IAVCEI, IAMAS, IASPEI, IAGA, IAG)

Convener(s): Roberto Sulpizio (Italy, IAVCEI)

Co-Convener(s): Ronan Le Bras (Austria, IASPEI)

Description
The cataclysmic January 15 eruption of Hunga Tonga Hunga Ha’apai presents a rare opportunity for researchers to explore new problems in volcanology, petrology and geochemistry, seismology, tsunamigenesis, infrasonics, and atmospheric science.



Go to the top of the page



JV04 Volcano Seismology (IAVCEI, IASPEI)

Convener(s): Jürgen Neuberg (UK, IASPEI/IAVCEI)

Co-Convener(s): Luca de Siena (Germany, IASPEI)

Description
Analysis of seismic signal is of paramount importance at volcanoes, because they allow to investigate the internal structure of volcanoes and, at the same time, they provide us information about changes in the geophysical state of the volcano. W e welcome in this session any contribution related to seismolgy applied to volcanoes and volcanic systems.



Go to the top of the page



JV05 Strain Localisation and Seismic and Volcanic Hazards (IAVCEI, IASPEI, IAG)

Convener(s): Jürgen Neuberg (UK, IASPEI/IAVCEI)

Co-Convener(s): Philippe Jousset (Germany, IASPEI)

Description
The strain localization is a fundamental process for improving our understanding of the basic physics of earthquake rupture. It is an nterdisciplinary problem that draws on physics, seismology, materials science, engineering, etc. We welcome in this session contributions aimed at highlighting the importance of strain localization in seismology or new techniques in the field.



Go to the top of the page



JV06 Geophysics of Solar System Planets (IAVCEI, IASPEI, IAG, IAGA)

Convener(s): Alessandro Bonforte (Italy, IAVCEI)

Co-Convener(s): Kumiko Hori (Japan, IAGA), Philippe Lognonné (France, IASPEI)

Description
Observations of the distribution, form, and composition of planetary bodies, where subduction, erosion, and vegetation does not obscure surface features. In this session we invite all contributions relating to planetary geology encompassing remote sensing, geomorphology, sample-based, experimental and numerical modelling, and Earth-analogue studies that utilize planetary data to provide a deeper understanding of this fundamental planetary process



Go to the top of the page



JV07 The Architecture of the Lithosphere in Volcanic Regions (IAVCEI, IASPEI, IAGA, ILP)

Convener(s): Luca Caricchi (Switzerland, IAVCEI)

Co-Convener(s): Kate Selway (Australia, IAGA), Christine Thomas (Germany, IASPEI), Gabi Laske (USA, IASPEI)

Description
The chemical and physical properties of the Earth's lithosphere controls geodynamic processes, the distribution of seismicity and the accumulation and migration of magma to the surface. We welcome research contributions on observations and modeling of lithosphere architecture in volcanic regions as well as the determination of relationships with seismicity, magma chemistry and its transfer to the surface.



Go to the top of the page